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ABSTRACT. Finite-difference and finite-volume formulations are analyzed in order to

clear up the confusion concerning their application to the numerical solution of conserva-

tion laws. A new coordinate-free formulation of systems of conservation laws is developed,

which clearly distinguishes the role of physical vectors from that of algebraic vectors which

characterize the system. The analysis considers general types of equations--potential,

Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are
described using a single, consistent nomenclature for both formulations. Grid motion due

to a non-inertial reference frame as well as flow adaptation is covered. In comparing the
two formulations, it is found useful to distinguish between differences in numerical meth-

ods and differences in grid definition. The former plays a role for non-Cartesian grids, and

results in only cosmetic differences in the manner in which geometric terms are handled.

The differences in grid definition for the two formulations is found to be more impor-

tant, since it affects the manner in which boundary conditions, zonal procedures, and

grid singularities are handled at computational boundaries. The proper interpretation

of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric
flows is brought out.

INTRODUCTION

Many current algorithms in computational fluid dynamics are based on the nu-

merical solution of conservation laws. This choice is motivated by several consid-

erations, the chief one being the ability to treat flow discontinuities automatically.

In an earlier paper (Ref. 1), the author treated the differential formulation of the

conservation equations. This formulation forms the basis for finite-difference algo-

rithms, which are historically very old. The more fundamental integral formulation

is the basis for finite-volume algorithms. These appeared more recently (probably

the earliest is found in Ref. 2), and are not as well known. There appears to be some

confusion and ignorance concerning the relation of these two approaches. The pri-

mary purpose of this paper is to shed some light on this subject. For this purpose,

it is useful to distinguish between the method of approach (integral vs. differential)

and grid definition (grid points represent vertices or centers of cells). It turns out

that the differences in method only play a role for non-Cartesian grids, and manifest

themselves in the manner in which the geometry of the grid is handled. The effect

on the numerical results is generally small in most cases. The differences in grid
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definition are important at computational boundaries, where they determine the

manner in which boundary conditions, zonal procedures, and grid singularities are
handled.

To provide the greatest possible utility, a unified presentation covering all classes

of equations is given. Both approaches are described using well-defined, consistent

nomenclature. The general case of three-dimensional unsteady flow with time-

varying grids is considered, and specialized to other cases when necessary. Only

those aspects of algorithms that relate to the comparison of the two approaches are

presented.

In order to make the discussion more physical and compact, vector notation is

used throughout. Here the word vector refers to physical vectors (e.g. velocity or

momentum) as distinguished from algebraic vectors (e.g. the set of conservative

variables). It is customary tc replace the vector momentum equation by its scalar

components, so that only algebraic vectors and matrices are encountered. To allow

for arbitrary scalar decompositions, and to preserve the compactness, the momen-

tum equation is here treated as a single vector equation. This necessitates the

introduction of a novel treatment of flux vectors and flux Jacobian matrices solely

in terms of physical vectors, and independent of a coordinate system.

The integral formulation of general conservation laws is presented first, and is

then used to derive the differential formulation. The new vector formulation of

flux Jacobian matrices follows, with applications to Roe averaging and flux vector

splitting. The next section presents the discretization of the equations, beginning

with a careful discussion of grid definition. The general characteristics of stan-

dard finite-difference methods are described, and some of the inaccuracies arising

from the treatment ot the grid geometry are enumerated. The discussion of finite-

volume methods first details various geometric constructions, including a unified

presentation of different methods to calculate the cell volume. The three main

types of equations--EuIer, Navier-Stokes, and potential are each discussed in turn,

and specific comparisons of the two approaches are made. Both centered and up-

wind treatments of inviscid flux terms are considered. The section on moving grids

presents in a unified way the combined effects of a non-inertial reference frame

and grid motion with respect to that frame due to flow adaptation. The role of

the two types of grids in formulating wall boundary conditions, zonal boundaries

and grid singularities is covered in the next section. The following section discusses

strong and weak conservation-law forms, and their reIation to quasi-one-dimensional

and axisymmetric flow. The concluding section contains brief discussions of hybrid
methods and the relation of finite-element and finite-volume methods.

This work was partially supported by NASA Ames Research Center under grant
NCC 2-16.
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FORMULATIONOF CONSERVATION LAWS

Integral Formulation.

Let the position vector r of a point in space and time t be defined with respect

to an inertial reference frame. Since physical conservation only has meaning over

a finite region of space and a finite interval of time, we divide the flow region into

contiguous cells which can vary with time. The general form of a conservation law
is

/ UdV- / UdV+ft: 2 / n.FdSdt=ft:2 / PdVdt, (1)

vct2) v(t, ) sct) vct)

where V(t) is the cell volume, ndS(t) is a vector element of surface area with

outward normal n, U is a conservative variable per unit volume, F is the flux of U

per unit area per unit time, and P is the rate of production of U per unit volume per

unit time. If U and P are scalars, then F is a vector; while if U and P are vectors,

F is a tensor. An example of P is the rate of production of a chemical species. Let

u and v(t) be the fluid velocity and surface element velocity, respectively. The flux
F can then be written as

F = (u - v)U + G, (2)

where the first term is the convection of U relative to the surface element, and G

stands for the non-convective part of the flux. It is often convenient to define the

cell geometry with respect to a non-inertial reference frame. In this case, let r0(t),

Vo (t),and 12(t) be the position vector of the origin, velocity, and angular velocity of
the non-inertial frame relative to the inertial frame. Then v can be written as

= vr + (3)

where

vr = vo(t) + fl(t) x [r - r0(t)], (4)

and vc(t) is the surface element velocity relative to the non-inertial frame, but

expressed in the inertial frame. The velocity v¢ can be determined by the motion

of a well defined surface, or some flow gradients (adaptive grid). The case u = v

corresponds to a Lagrangian cell.

The state of the fluid is specified in terms of a primary or primitive variable Q.

An example of a flow governed by a single conservation law is potential flow, for

which Q is the velocity potential ¢ and U is the density p. In general the flow is

governed by a system of conservation laws, in which case U, F, P, and Q represent

a set of variables. The primitive variables Q for the conservation of mass, momen-

tum, and energy are p, u, and the specific internal energy e. The corresponding
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conservative variables U are p, the momentum per unit volume m = pu, and the

total internal energy per unit volume e = p(E+ 5u.1 u). For nonequilibrium flow, the

partial density of various species and the energy of internal states of species can be

additional variables. In some turbulence models, additional variables for turbulent

quantities may be required. In order to close the system of equations one needs an

equation of state, and possibly additional relations to define transport coefficients

and the production terms P.

For the Euler equations, both F and U are functions of Q, and consequently F

can be expressed as a function of U. For the Navier-Stokes equations, F depends

additionally on VQ, where the notation VQ denotes the gradient of Q, its transpose,

or the divergence of Q. (If thermal radiation is present, F can involve integrals of

Q, and additional integro-differential equations would be required. This case is not

discussed in this paper.) For potential flow, both F and U also depend on VQ as

well as OQ/Ot in the unstea,]y case. For all flows, an additional explicit dependence

on r and t comes from the surface element velocity v. We note that the integral

formulation may require spatial and temporal derivatives of Q to be calculated.

If we assume all variables are continuous in time, then Eq. (1) reduces to

-_ U dV + n . F dS = P dV. (5)
V S V

This is the usual statement of a conservation law. For steady-flow calculations,

the first term is absent. Even when it is employed in time asymptotic marching

techniques, it need not be treated accurately. This poses less stringent conditions

on the numerical algorithm. In many applications, Eq. (5) is only satisfied in a

global sense, over the complete flow region. In this sense it is used as an overall

check on a numerical method. There are additional global conservation laws that

can be derived under special assumptions that are sometimes used as constraints

in an algorithm. Examples are conservation of entropy (inviscid, continuous flows),

kinetic energy (incompressible, inviscid flow), and vorticity (plane incompressible

flow). In this paper only local conservation laws that serve to define the basic
numerical method will be considered.

Certain geometric identities can be derived as special cases of Eq. (1). The

condition that the cell is closed is given by

= (6)dS 0.

S

The relative rigid body motion of two frames of reference is expressed by

n = (7)dS O.

,S
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Using Eqs. (4) and (6), this can be replaced by

rxndS=O.

S

(8)

The conservation of volume for a time-varying cell is given by

V(tz)- V(tl) = _tt2 /
1

s(t)

n. v_ dS dt. (9)

An additional geometric constraint is that the sum of the cell volumes must equal

the total volume of the flow region.

A main motivation for the conservative formulation is to capture flow discon-

tinuities in inviscid flow. The jump conditions across such discontinuities are just

limiting forms of the integral relations. Applying Eq. (5) to a pill box with faces AS1

and AS2 straddling a surface of discontinuity whose normal in a positive direction

is n, we obtain in the limit the jump conditions

f n.FdS= f n.FdS. (10)

ASI _S_

Actually, since the geometry of space is continuous, Eq. (10) can be replaced by the
weaker relation

n.(F1-F2)=0. (11)

It is possible for algorithms to satisfy the weak form of the jump conditions and
violate strict conservation.

Differential Formulation.

The differential formulation is obtained by applying Eq. (5) to a cell in physi-

cal space which is the image of the computational cell d_ dr/d_" resulting from the
coordinate transformation

r = r(_,r/,¢,r) (12)
t=T.

Let S q dr/d_ be the surface area vector in the positive _ direction (with analo-

gous definitions for the other directions), and V d_ dr/d_ be the volume of the cell.

Equation (5) then takes the form

(UV)r + (S ¢.F)_ + (Sn.F), + (S ¢-F)¢ = PV, (13)



where subscripts indicate partial differentiation,

S _ = rn × r_

S _ = r_ X r_

S f ----r_ X rrl,

and

(14)

V = re •r, x r_. (15)

The quantity V isalso equal to the Jacobian J or j-z of the coordinate transfor-

mation.

In expressing U, F, and P as functions of Q and its derivatives,the following

relations are used:

v --rr,

where

VQ = V_Q_ + V,TQ. + V¢Q_,

v_ = s¢/v, v. = s./v, v_= s_/v,

(16)

(17)

(18)

and

OQ/at = Q_ - rr. VQ. (19)

From Eq. (19) one can obtain the relations 0_/0 t = -rr • V_, etc., for the time

derivatives of the inverse transformation. Equation (13) can also be written in the

equivalent "Cartesian" form

O, + (k_)_ + (_.). + (k_)_= P, (20)
where

fY=UV, iS¢=S_.F, F"=SO-F, k¢=S¢.F, P-PV.

The geometric identities (6) and (9) become

(S_)_ + (S"), + (Sf)¢ = 0, (21)

and

V_ = (S _.r_)_ + (S".r_), + (S t.r_)_. (22)

Equation (22) is called the differential statement of the geometric conservation law

in Ref. 3. Using Eqs. (21) and (22), Eq. (13) can also be written in the quasi-
conservative form

Ur + V_. (F} - rrU_) % Vr/. (F_ - rrU,) + Vf-(F'_ - rrU_) = P, (23)

where

F' = uU + G.

The above form iscalledthe chain rule conservation law form in Ref. 4.
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NEW COORDINATE-FREE TREATMENT OF FLUX VECTORS

We have seen that Eq. (1) can represent a scalar or vector conservation law. Here

the word vector refers to a physical vector such as position, velocity, or momentum,

and is represented by a bold faced symbol or an arrow.The related higher order

quantity is a tensor. It is also convenient to express a set of variables as an algebraic

vector, and represent it as a column or a row. The related higher order quantity is a

matrix. Since all calculations must ultimately be done with numbers, and to avoid

the confusion between the two uses of the term vector, the momentum conservation

law is normally treated as three scalar laws for the components of the momentum. A

compactness and greater physical insight can be obtained by retaining the physical

vectors as components of the algebraic vectors. The procedure will be illustrated

for the inviscid flow of a perfect gas.

Vector Formulation of Flux Jacobian Matrices.

The set of conservative variables U is given by the column vector

U = . (24)

Let n be the normal in a positive direction to a cell surface or a coordinate surface.

One can then define the normal flux component Fn -- n • F, the normal velocity

components un -- n • u and vn -- n •v, and the normal relative velocity component

u _ = n. (u - v) = un - vn. For inviscid flow, the set of variables Fn is given by the
column vector

Fn = = mu' + pn , (25)

eu t + pun

where M, P, and E are the normal flux of mass, momentum, and energy, and p is

the pressure.

The vector F,, is a non-linear function of the vector U. In many algorithms one

therefore employs a linearization in time or space. This requires the calculation of

dFn in terms of dU. If v_ and n are held fixed, the first component of dFn can be

written as

d(pu') = -vn dp + n. din. (26)

This can be rewritten in the form of a matrix multiplication as

= - , (27)
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where the dot product is implied in multiplying the second element of the row vector

by the second element of the column vector. Applying the same procedure to the

o+.her components of dFn, we can define a flux Jacobian matrix operator A satisfying

dFn = A dU, using the convention that in forming the product of a matrix element

with a vector element, a dot product is implied if each element is either a physical

vector or a tensor. For a perfect gas satisfying the equation of state

p =  pe, : 1, (28)

the matrix A can then be written as

--v. n 0 ]
A = tcbln - unu un - _¢nu + ulI an , (29)

(t_bl - H)u,_ Hn - tcu,_u u' + tcu.

1 1
where H = _/e + iu •u is the total enthalpy per unit mass, bl = 5u -u, and I is the
identity tensor.

For some algorithms, one requires the diagonalization of A in the form R-1AR =

A, where A is the eigenvalue matrix, and R and R -1 are the right and left eigenvector

matrices, respectively. For multiple space dimensions one requires a set of linearly

independent eigenvectors corresponding to a repeated eigenvalue. Let ai be an

arbitrary set of spatial basis vectors, and a j be the set of reciprocal basis vectors

satisfying a,-a s. = 6i, where _ is the Kronecker delta. One can then define

a,i = n • a,, bi = n × ai, ash = n • a j, and b j = n × a s. If/3 is an arbitrary scalar,

the three matrices can be written as

A

_16_ 0 0

0 )_2 0

0 0 ._3

= 0

0

0 0

u'+c 0

0 u'-c

(30)

R

"1

ani 1 1 |

a.iu + 3bi u + cn u - cn J,anibl + flbi " u H + cun H - cu,_

and

R-I

"aJ(1 - b3) --/3-1(b j" u)

!(b3- ,,,,/c)2

'-(b3+u./c)2

aJb2 u + 3-lbJ

l(b2u-n/c)2

l(b2u + n/c)2

/'
J

(31)

(32)

where c = (_p/p)_ is the speed of sound, b2 = a/c 2, and b3 = b2bl. For three

dimensions, A is a five by five matrix, while R has five columns and R -1 has five
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rows. Since the basis vectors ai are linearly independent, it follws that the three

eigenvectors corresponding to the repeated eigenvalue A1 are linearly independent.

One can define functions of the matrix A through

f(A) = f(A1)P1 + f(A_)P2 + f(A3)P3, (33)

where the projection operators P1, P2, and/)3 are matrices satisfying

R-IPIR = 0 0 , R-1p2R = 1 ,

0 0 0

R-'P3R = [i°00
0

0

1

(34)

Examples of f(A) are A, IA[, sgnA = IAI/_, and A+ = (A ± 1_1)/2, The formula for

P1 is

P1 = unn - b3u b2uu - nn + I - b2u (35)

(l+ba)b, (l+b3)u-u.n b3

Using the fact that

P, + P2 + P3 = I = [i°I0
0

0 ,

1

(36)

where I is the unit matrix, one can express the other two projection matrices as

P_ = lliAlc + I(1 _= u'lc) - P1]. (37)

All the results obtained so far can be generalized to an arbitrary gas law.

In closing, one should note that the matrices A, R -1 , P1, P2 and P3 are operators

whose definitions imply that they are operating on some quantity to their right.

They must therefore be used with some care. As an example, the product R-1R

gives the identity matrix. On the other hand, the product RR-' is undefined, and

does not give the unit matrix I, even when interpreted as a tensor product.

Roe Averaging.

Given two states UL and UR associated with the common surface vectors n and

v, the Roe averaged state/_] (Ref. 5) is defined by

F,_(UR)- F,_(UL) = A(U)(UR- UL). (38)

This will be an exact relation if the two states correspond to a discontinuity. A

unique state U can be obtained by invoking the plausible restriction that the average
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velocity fl lies in the plane of UL and UR. Upon substituting Eqs. (24), (25), and

(29), and recalling that uL, UR, and n are arbitrary, independent vectors, one
obtains from the second component of Eq. (38)

Q : O_UL -]- (1 -- O_)UR, (39)

where

= +

Similarly, the third component of Eq. (38) then yields

I=I= aHL + (1 - a)HR.

(40)

(41)

The sound speed, derived from the total enthalpy via c2 = _(H - ½u-u), can be

written as

1
_2 = _a(l - a)(uR - UL)" (UR --UL) + ac_, + (I - a)c[.

(42)

The above derivation is much more direct than that found in Ref. 5. One notes

from Eq. (42) that e 2 is greater than the weighted average of c_, and c_. It follows

from Eq. (30) that for either _,2 or >,3, it is possible that the Roe averaged eigenvalue

could lie outside the range determined by the two states L and R. In particular, if

the normal relative speed is very close to sonic for both states, the corresponding

eigenvalues could both be of one sign, while the Roe averaged eigenvalue could have

the opposite sign. Some numerical examples illustrating these phenomena are found

in the appendix. The implications for algorithms based on Roe's scheme should be

studied further.

Flux Vector Splitting.

In flux-splitting methods the flux vector Fn is split into several parts, each of

which is approximated numerically according to the sign of a relevant eigenvalue.

The earliest methods utilize the homogeneity property

F_ = AU (43)

valid for a gas satisfying
p=pf(d. (44)

(It is thus valid for a gas that is thermally perfect, but calorically imperfect.} Using

Eqs. (33) and (43), one can split Fn as

f. = + + f.3, (4S)
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where
F,_i = AiPiU. (46)

For a perfect gas one obtains

 1 i11- u± en

"7 ½u .u

(47)

This form of flux splitting was first given in Ref. 6. The earlier Steger and Warming

splitting (Ref. 7) is of the form

F_ = F + + FZ, (48)

where the forward and backward flux vectors F + and F_- are obtained from EQ. (45)

by substituting )t+ and )_-, respectively. If the normal relative speed is sonic or

supersonic, one obtains

F + = F_, F_- = 0 for u' _> c
(49)

F_- = F,, F + = 0 for u' < -c.

The above split fluxes are not continuously differentiable at the zeros of the eigen-

values. Van Leer (Ref. 8) proposed a new form of splitting which makes each split

flux continuously differentiable and also degenerate for lull < c. The latter con-

dition produces one zero eigenvalue for the split flux Jacobians, leading to steady

transonic shock structures with only two interior zones. Equation (49) is still as-

sumed valid for luq >__c. For ]u' I < c, the requirement of continuous differentiability

leads to the presence of a factor (C + c)2 in the formula for F_, respectively. The

simplest splitting of the mass flux gives

P ,
M + : +_c(U + c) 2. (50)

The splitting of the momentum flux takes the form

1

P+ = M+lu - _(u' _= 2c)n]. (51)

Note that Eqs. (50) and (51) are valid for a general gas law, with 7 = pc2/p • In

order to satisfy the degeneracy condition, the split energy flux must satisfy

E+= f(M+, P+,n,v). (52)

One can show that this is only possible for a perfect gas. The resulting expression

is

E +=M+[((7-l)u'+2c}2 Vn(u,q=2c)+ 1 ]2('72 - 1) "7 _(u-u - u '2) . (53)
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DISCRETIZATION OF CONSERVATION LAWS

Spatial Discretization.

A primary grid is defined by choosing a set of discrete grid points and connections

among them. Normally points are chosen to lie on the flow region boundaries. The

grid also divides the region into a set of contiguous primary cells, where the grid

points are now cell vertices, and the connections form the edges of the faces com-

mon to neighboring cells. If the shapes of the connections are not precisely given,

then the edges are not defined uniquely. Normally the connections are specified as

straight lines. Even when the shapes of the connections are given, the shapes of the

faces are not uniquely defined in three dimensions. For ordered grids the cells are

quadrilaterals in two dimensions and hexahedrons in three dimensions. Grid points

may be specified numerically or analytically. In time-dependent algorithms the grid
points can advance in time.

A secondary grid can be obtained by determining the centers or centroids of the

primary cells (in a non-unique way) and connecting them across cell faces. The

secondary grid points also act as vertices of secondary cells. We thus have two

interlocking grids, with the cell vertices of one being the cell centers of the other.

One should note that if the primary grid is not sufficiently smooth, a secondary

grid with straight line connections may not be possible. One can always define a

secondary grid with piecewise straight connections by determining the centers of

the faces of each primary cell, and connecting them to the cell center with straight

lines. The role of grids in the finite-difference and finite-volume discretization of

the equations is examined below. The discussion focuses primarily on stationary

grids at interior points. The case of moving grids as well as considerations at flow

region boundaries are covered in subsequent sections.

Finite-Difference Discretization.

Standard finite-difference methods are based on the discretization of Eq. (20),
with the geometric quantities included in the definitions of the transformed vari-

ables. The position vector r and the primary variable Q are defined at the primary

grid points corresponding to equispaced points in the computational _, r/, ; space.

The geometric quantities defined by Eqs. (14)-(18) are evaluated at each grid point

from the r data by central-difference approximations. At interior points, a conser-

vative difference algorithm is applied in terms of the transformed variables defined

in Eq. (20). If i, j, k are the integer indices corresponding to the _, r/, _"coordinates,

the spatial difference approximation can always be expressed in the form

= - (54)

where _+½,j,k is any numerical approximation to the flux across the i + ½,j,k

face of the secondary grid. Similar relations hold for the rl and _ derivatives. The
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numerical flux can be obtained by central differences, or by any of the varieties

of upwind methods. It can also contain additional artificial terms to stabilize the

calculation. The time integration of Eq. (20) can be explicit or implicit, may involve

dimensional splitting, and can involve tlme l|nearization to avoid iteration during

a time step. In the latter instance, the matrix A of Eq. (29) is evaluated at the

primary grid points.

The form of Eq. (54) guarantees that when Eq. (20) is summed over all the

grid points, interior flux terms will cancel. This telescoping property defines con-

servative differencing. For unsteady flow, the summation implies that _'i,j,k is an

approximation to the conserved variable contained in a secondary cell surrounding

the primary grid point i,j, k. These considerations must be modified for those grid

points that lle on the flow region boundaries. First of all, the geometric quantities

must be evaluated using one-sided differences. The flow variables U are calculated

by applying appropriate boundary conditions. These involve auxiliary equations or

characteristic relations which determine which quantities are specified and which

are related to interior quantities in some manner.

It is seen that the standard finite-difference approach combines geometric and flow

variables and subjects the resultant transformed variables to an algebraic treatment.

The flow variables are unknown, and can only be determined within some truncation

errors. On the other hand, for a given coordinate transformation the geometric

variables obey their own identities which could be satisfied exactly. The combined

approach can give rise to numerical errors even when the flow is known exactly.

Some of the sources of inaccuracies are:

1.The geometric identities (21) and (22) may not be precisely satisfied. Since the

surface area vectors are linear functions of the position vectors in two dimensions,

the discrete form of Eq. (21) will have no truncation error in this case when central

differences are used throughout. However, in three dimensions the area vectors are

quadratic functions of the position vectors. Since the product of an average is not

equal to the average of the product, truncation errors will be present in this case. As

a result, the time integration of a uniform flow will result in numerical oscillations.

The discretization of Eq. (15) will result in secondary cell volumes that will not sum

to the total volume of the flow region. This can be a source of error in unsteady flow

calculations. If the grid is undergoing deformation with time (vc _-0), the discrete

form of Eq. (22) will in general not be satisfied, irrespective of how V and rr are

evaluated. This will give rise to errors in a uniform flow even in two dimensions.

If the numerical flux is obtained by an upwind method, the geometric variables are

not treated in a fully centered way. This also can produce numerical errors, even

in two dimensions.

2.The calculation of derivatives from Eqs. (17)-(19) can give rise to inaccuracies.

In potential flow, where Q is the velocity potential, the gradient of Q is the fluid
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velocity and therefore must be determined accurately. If the difference approxima-

tion for Q_ is not consistent with that for V_ based on geometric quantities at the

primary grid points, the calculation of VQ from Eq. (17) will result in errors in a

uniform flow. Similarly, for unsteady potential flow with moving grids, the time

differencing of Qr and rr must be consistent in order to avoid further errors from

the use of Eq. (19}. For the Navier-Stokes equations, an inaccuracy of a different

kind is possible. If a central difference approximation for VQ from Eq. (17) is used

to calculate the transport terms in the numerical fluxes of Eq. (54), the derivative

(F¢)_ at the grid point i,j,k will depend on the position vectors r at the points

i + 2, j, k and i - 2, j, k. This lack of compactness puts more stringent requirements

on the smoothness of the grid in order to achieve a desired accuracy.

3.The treatment of boundary points can also be a source of inaccuracies. The

evaluation of geometric quantities by one-sided differences is inconsistent with the

central difference approximation used at the neighboring interior point, resulting

in a possible loss of accuracy. If a grid singularity occurs on the boundary, the

ordinary difference procedure can give a large error. The boundary procedure used

to evaluate the flow variables at a boundary grid point may not explicitly satisfy

Eq. (20), which is used at the neighboring interior point. This inconsistency can

also be a source of error.

In a practical finite-difference code these numerical errors are handled in two

ways. Specific corrections can be applied to cancel errors in a uniform flow. The

standard finite-difference discretization can also be modified to treat the geometric

terms more precisely. Both of these procedures are discussed in more detail in the

comparisons with the finite-volume discretization presented below.

Finite-Volume Geometry.

As a building block for subsequent calculations, we consider a triangular face

whose vertices are rl, r2 and r3. A properly oriented surface area vector for that

face is given by

123

The formula implies that the edges are straight lines connecting the vertices, and

that the face is the plane determined by the three vertices. Actually, it follows from

Eq. (6) that the surface area vector is only a function of the shapes of the edges.

Thus Eq. (55) is valid for any face with straight line edges. Further reflection reveals

that there are an infinite number of edge shapes connecting two vertices that will

give the same surface area vector as a straight line. These shapes can be called

equivalent straight line shapes. Thus Eq. (55) is valid for any triangular face with

equivalent straight line connections.
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Let a multiply subscripted position vector denote the Vectorial average of the

individual vectors. Thus
1

rl_3 -- _(r, + r2 + r3) C56)

is the center of the face. One can easily show that for a plane face with straight

line edges

f rdS : _123r12s, (57)

123

i.e., the centroid is located at the center. Note that this is not valid if the edges

deviate from straight lines. From Eq. (8) it follows that the moment of the area

M123 _ f r × n dE = S123r123 × n123 (58)

123

for any face with straight line edges. For a tetrahedral cell with vertices rl, r2, r3,

and r4, defined by plane faces and straight edges, the volume is given by

1 1

Vx234 = _(r2 - rx) × (rz - rl). (r4 - rl) = _Sz2s" (r4 - rz). (59)

The above formulas can be used to make geometric calculations for an arbitrary

cell with straight line edges. Each polygonal face can be subdivided into plane

triangular facets, and the total volume treated as a sum of tetrahedra. The resulting

surface area vectors and their moments for each face are unique, but the total volume

will depend on the method of subdivision. Calculations for a regular hexahedral

cell are presented below.

A hexahedron defined by eight vertices is shown in Fig. 1, with edges 14, 12,

and 15 directed in the positive _, '7, and _ directions, respectively. The surface area

vectors in the positive _ direction are $1562 and $4873, as indicated. The expression

for the former can be written with the aid of Eq. (55) as

1

SIG62 : _(r 6 -- rl) X (r 5 -- r2)

= - x Cr, -

(60a)

(60b)

The more efficient form (60a) is expressed as the vector product of the two diagonals,

showing that each diagonal is perpendicular to the surface normal. The form (60b)

is in terms of the two vectors joining opposite edge midpoints. Since these vectors

intersect in the face center rise2, it follows that the four edge midpoints and the face

center all lie in a plane midway between the planes containing the two diagonals.
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The moment of the area is obtained by dividing the face along one diagonal, and
can be written as

M1562= / r × ndS = r165 × Sles + r126 × 8126. (61)

1562

In order to insure that the volumes of the hexahedrons sum to the total volume,

the shape of each face must be precisely defined and consistently used by the two

neighboring cells. A simple way to calculate the cell volume is to choose an arbitrary

point inside the cell. The volume is just the sum of the volumes of six pyramids,

each with one face as the base, and the arbitrary point as the common apex. For

each non-planar face there exists the location of an equivalent plane face which

gives the same volume for the pyramid. In fact, there are an infinite number of face

shapes corresponding to a given equivalent plane face. The volume of the pyramid

is then one-third of the dot product of the surface area vector of the face and a

vector from the apex to any point lying in the equivalent plane.

The earliest expression for the volume of a hexahedron, based on an equivalent

plane face containing a diagonal, was given by Rizzi (Ref. 9). Unfortunately the

eqivalent planes for a pair of opposite faces contain oppositely oriented diagonals,

so that the volumes do not sum properly. Kordulla and Vinokur (Ref. 10) showed

that of the eight consistent divisions of the faces by diagonals, four result in a very

simple expression for the volume. If one vertex of a cell main diagonal is chosen

as the common apex, and the other vertex as the intersection of three equivalent

plane faces, the six pyramids reduce to three pyramids sharing the main diagonal

as a common edge. Using the second form of Eq. (59), one obtains the expression

1 s
V12345678 = _( 1485 + S_234 + S1_62)" (r7 - r,). (62)

Three similar expressions can be derived based on the other three choices for main

diagonal, each yielding a different value for the volume.

An alternate expression for the volume is based on the equivalent plane face

passing through the edge midpoints and face center. Formulas using face centers

to calculate the volumes of the six pyramids were proposed by Jameson (private

communication, 1985) and Holmes and Tong (Ref. 11). It was shown by Davies and

Salmond (Ref. 12) that the same equivalent plane corresponds to a face defined as a

doubly-ruled surface. Edge midpoints were used to obtain more efficient expressions

for the cell volume, but full efficiency was not obtained since a cell vertex was chosen

as the common apex. If the edge midpoint rl2 is chosen as the common apex, and

r67 and r4s are each at the intersection of two equivalent plane faces, one obtains

the expression

1 S
Vl_S45e_s = _[( 56_8 + S_376)" (r_7 - rl_) + (S14_s + S4,,s). (r48 - r,2)]. (63)
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It can be shown that the volume given by Eq. (63) is the average of the volumes

determined by the eight consistent divisions of the cell faces by diagonals.

For completeness we give the geometric expressions for two-dimensional and ax-

isymmetric flow. The volume element is now defined by the co-planar vertices rl,

r2, r3, and r4, where k is the unit normal to the plane. For two-dimensional flow
the surface area vectors take the form

6

$12 : (r2 - rl) x k, $23 = (r2 - r3) x k, (64)

while the area moments become

M12 = /

12

M23 = /

23

1

r x ndS= _(rl .rl -r2. r2)k,

1
r ×ndS = =(rs .r3 - r2.r2)k.

Z-

(65)

The volume is given by

1

V1234 ---- _(r3 - rl) x (r2 - r4). k. (66)

For axisymmetric flow, let y be the distance from the axis of symmetry. The

surface area vectors (per unit circumferential angle) are

SI2 = Y12(r2 -- rl) × k, S23 = y23(r2 - r3) x k, (67)

while the lateral surface area vector becomes

1

S1234 : _(r3- rl) x (r2- r4). (68)

The volume (per unit circumferential angle) can be obtained from

1

V1234 = _[YlS2(r3 - rl) x (r2 - rl) Jr- yls4(r4 - rl) x (rs - r,)]. k. (69)

Finite-Volume Discretization.

Finite-volume methods are based on the discretization of Eq. (1), with the surface

integral replaced by the sum of integrals over the faces of the cell. The method is

normally applied to cells defined by the primary grid, so that certain cell faces will

coincide with the flow region boundary. One can also apply the method to secondary
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cells, in which case the boundary cells are not full cells. The discussion is limited to

ordered grids, but much of it can be extended to general grids. A full set of integer

subscripts refers to a cell, or the center or centroid of a cell. Fractional subscripts

then indicate cell faces, edges, or vertices. Thus the cell is defined by specifying the

vertices (e.g. r_+_j+_,k+_), and these are used to calculate surface area vectors

(e.g. S_+½,j,k) , area moments, and the cell volume V_,y,k using the formulas derived

above. This insures that all the geometric identities and constraints are precisely

satisfied. If F is spatially uniform (which is valid for a uniform free stream), the

numerical calculation of the surface integral for each face should sum to zero (within

roundoff errors). This is a necessary condition for the preservation of a free stream.

Temporal discretization is given by the superscripts rt and a ÷ 1, which refer to

times tl and t2, respectively.

The primary variable Q is normally associated with the cell, or cell center. In

some algorithms, such as that of Tong (Ref. 13), it is defined at cell vertices. In the

steady-state algorithm of Refs. 14 and 15 for the Euler equations, Q is the average

value on a cell face. Only the first case is treated here. We first consider a flow

governed by the full set of conservation laws, for which U is a function of Q. All

spatial integrals are replaced by the product of the spatial quantity and the average

value of the integrand. Thus the geometry of the discretization is treated separately

from the treatment of the physical variables. There is a certain ambiguity in the

interpretation of Uij,k in the relation

dV

Vi,j,k

Strict equality implies that Uij,k is the average value of U in the cell. But in

order to calculate a surface flux it is convenient to think of Ui,y,k as the value of

U at some average point in the cell, with the -- sign replaced by the _ sign. This

interpretation of Ui,j,k is also implied when one uses the equation of state to express
the pressure in terms of the conservative variables. A characteristic of the finite-

volume method is that the precise location of this average point is not required

during the calculation. Only in the output of the solution is a location of this point

desired. Some investigators have suggested the cell centroid for this point. This is

strictly valid only if all the components of U vary linearly throughout the cell. Since

the distribution of U is not known, the centroid has no particular advantage over

the cell center, defined as the vectorial average of the cell vertices. The latter point

is easier to calculate, and is therefore preferable. Of course, when the finite-volume

method is applied to a secondary cell, the primary grid point is available as the

average point for the cell.

The major problem in a finite-volume method is the calculation of the time in-

tegral of the average flux over each face. The time integral can be approximated
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as

where

(71)

l_',.¢+_,y,k - / n. F dS _ S_+{,y, k .Fi+{,j,_:, (72)

and At = t2 - tl. For implicit time integration (0 # 0), F n+1i+{,i,k is not known

and is therefore linearizedabout time level n. On the other hand, for a cellface

that varies with time (S _ i ),_+1 isknown and need not be linearized.This is
i+ 2 ,j,k

one distinction between the finite-difference and finite-volume approach which is

discussed further in the next section. The calculation of the average flux is now

presented for each of the class of equations, with comparisons between the finite-

difference and finite-volume methods made in each case.

Euler Equations

For the Euler equations, one only needs the inviscid part of the average flux.

The numerical procedures for this case can be divided into three classes. In the

first class Fi+½n.,k depends only on ULj,k and Ui+l,j,k, but requires an additional

artificial smoothing flux to stabilize the calculation. This class includes multi-step

algorithms in which Fi+{,_.,k is alternately Fi,i,k and Fi+l,i,k, where

F ,j',k-- F(Ui,j,k), (73)

and single step centered approximations of the form

1

Fi+_,j,k = _(Fi,j,k + Fi+ld,k). (74)

Another form for the centered approximation is

(75)

where
1

(76)

Form (75) is probably more consistent with the spirit of a finite-volume formulation.

As discussed in Ref. 11, it gives better results near solid wall boundaries. It has the

disadvantage of requiring three times as many flux evaluations in three dimensions
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as does (74). As an alternative, Refs. 11 and 16 suggest a form based on Eq. (2).

(We are treating the case v = 0 for now.) It can be written as

1 G
F_+],S,k = U_+],s,kU_+],i,k + _( i,i,k + G_+l,i,k), (77)

where
1

u_+_,_.,k= _(u_,i,k+ u_+l,j,k). (78)

This produces the favorable behavior of form (75) with less computing effort.

The approximations to the flux integrals for the two faces in the _ direction based

on Eq. (74) take the form

1

+ - (r,-,,s,k+ (79)

The analogous finite-difference expression is

1-[s_ _ k S _ •F___,j,_].2 .+ ,1, "F_+l,y,k-- _-l,i,k (80)

Note that Eq. (80) is simpler than Eq. (79), since it contains fewer terms. Yet

the conservation that it implies is carried out over a wider region. Specifically, the

numerical telescoping property is valid over a distance of two cell widths in each

direction. Thus conservation in a finlte-dlfference discretization is effectively carried

out over eight sets of overlapping cells with double the size in each direction of the

original cells. This could lead to larger errors for grids that are not smooth, and

near flow region boundaries.

Another source of error in the standard finite-dlfference discretizatlon for three

dimensions is the central difference approximation to the surface area vector such

as S_+1,i, k. This will result in oscillations for a uniform flow since Eq. (6) is not

satisfied for the doubly-sized cell. An appropriate difference formula, equivalent to

the application of Eq. (60b) to the larger cell, was presented in Ref. 17. A more

efficient formula was given in Ref. 3. Actually, the most efficient form is derived

from Eq. (60a) as

1

S_+1,i,k= _(r_+1,i+1,k+1- r_+i,i-l,k-1) × (ri+1,j-l,k+l -ri+Ij+l,t-l). (81)

This takes no more operations than the central difference formula and eliminates

errors for a uniform flow. For problems in which the free stream is a uniform flow, an

alternate procedure suggested in Ref. 17 is to subtract the free-stream fluxes from
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the conservation equations. This will guarantee exact cancellation of free-stream

errors resulting from the central difference approximation to S/_+l,/,k.

To circumvent the need for artificial smoothing fluxes with the first class of ap-

proximations, upwind-biased approximations that model the waves crossing the face

_+ _+ n'are required. For the face with surface area vector S ],j,k = S ½,j,k i+],j,k' we

introduce the notation F _ = n__]. ,j,k " F for the normal flux component. In order

to achieve higher than first-order spatial accuracy, an upwind-biased numerical flux

F:+],y,k_ depends on states other than Ui,y,k and Ui-4-1,j,k. There are two ways this

is generally accomplished. Probably closer to the finite-volume philosophy is the

class of approximations associated with the name MUSCL, in which the final cal-

culation is only in terms of quantities defined at the face. If Ui+],y,k and .U_+],j, k

are conservative variables just on the negative and positive sides of the face, then

the numerical flux is given by an expression of the form

U +
Fi_+],j,k : f(U_+],j, k, ,+],/,k,n_+],/,k) (82)

For first-order accuracy, U_+½,j, k = U4j,k. For higher-order spatial accuracy, if

dimensional splitting is employed, Ui+],j, k is obtained from upwind-biased inter-

polation of Ui-x,j,k, Ui,j,k, and possibly Ui+l,j,k, where the coefficients may be

modified using appropriate limiters to prevent numerical oscillations. Analogous

formulas give U_ _ ,j,k" Examples of a higher order calculation without dimensional

splitting for two dimensions may be found in Refs. 18 and 19.

The solution (82) that represents the wave processes most physically is the one-

dimensional Riemann solver for the two constant states Ui+ ½,j,k and U_½,y,k. This

gives a unique value for Ui+ ] :_.:k at the face, and the resultant numerical flux

F_+],/, k : F_(Ui+],y,k). (83)

Since an exact Riemann solver is iterative, and computationally expensive, approxi-

mate Riemann solvers have been devised, such as those of Godunov (Ref. 20), Osher

and Solomon (Ref. 21), Collela (Ref. 22), Montagn_ (Ref. 23), Pandolfi (Ref. 24),

and Dukowicz (Ref. 25).

An algebraic approach to obtain (82) is that of flux-vector splitting. For the

Steger-Warming and Van Leer splittings, the solution is

Fi_+],j,k = F_+(Ui-+],j,k ) + F_-(U_.+],j,k). (84)

Calculations using both these splittings for an implicit factored algorithm are pre-

sented in Ref. 26. Simihtr calculations using the splitting of Eq. (45) are found
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in Ref. 6 for an implicit algorithm, and in Refs. 27 and 28 for a two-step explicit

algorithm. Implicit finite-difference calculations using the Steger-Wasming splitting

are carried out in Ref. 29. Here free-stream fluxes are again subtracted in order to
eliminate errors in a uniform flow.

A third approach is based on a local linearization due to Huang (Ref. 30) and

Roe (Ref. 5). In terms of the operator A_+_,i, k - A(U_+½d,k ) for some average

U_+½d,k, the solution can be written in the form

_ _ U+ -
F/_j,k -- I[F¢(U/+_,i,k) + F_(U/+_j,k) IAi+½d,kl( i+_,j,k - Ui+½d,k)]" (85)

The last term can be interpreted as a dissipative correction to a centered approxi-

mation, with Ai+{ d,k acting as a numerical viscosity operator. Since (85) violates

an entropy inequality, the actual form that is used is modified in some manner in or-

der to prohibit non-physical solutions. Ui+ _ d,k should properly be the Roe average

of U+_d,k_ and U_-+_,i,k, but equally satisfactory resuts are usually obtained if the

simpler arithmetic average is used. The results of the other two approaches can also

be writen in a form analogous to (85). For example, Eq. (84) for Steger-Warmlng

flux splitting can be written as (85), with the dissipation term replaced by

u + (86)IA(U  ,S,k)I ,+{,j,k

The other class of higher-order upwind-biased approximations to the numerical

flux at a cell face involves the consideration of the wave processes at neighboring

faces. This can be done using any of the three approaches described above to

represent the wave processes. There is some question as to how the geometry

of the neighboring face should enter the calculation. From a strict finite-volume

viewpoint, all calculations relating to the determination of
F_+_,j, k should only

involve n _
i+½,j,k, even at neighboring faces. This is computationally expensive, and

does not take into account the grid curvature. It is therefore more appropriate to

use the local face normal in calculations involving parameters defined at neighboring

faces. The local geometric scale of the neighboring face can also be involved. To

illustrate this we consider the application of the ]oca! linearizatlon approach, In the

scheme of Ref. 31, one requires flux differences across neighboring faces, modified

', k theby appropriate limiters. The relevant parameters defined for face i + _, j are
components of

S,+½,y,kR_+I{,y,k[F_(Ui+Li,k) - F_(U,,j,k)], (87)

In the modified flux approach of Hasten (Refs. 32 and 33), as implemented for

curvilinear coordinates in Ref. 34, the relevant parameters are the components of

Vi+_ j,kRi+l],j,k (Ui+ 1,i,k - Uid,k ), (88)
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where V_+ _,i,k is some average of the volumes of the two adjoining cells. The two

different geometric scales arise naturally from the extension of a Cartesian analysis

to curvilinear coordinates using Eq. (20). In the finite-volume upwind scheme of

Coakley (Ref. 35), the parameters are those of Eq. (88) without the geometric

scale (i.e., V¢+½,i, k = 1.) Further numerical experiments should be conducted to

determine which geometric scale (or none at all) gives the best results.

Navier-Stokes Equations

The calculation of transport terms in the average flux for the Navier-Stokes equa-

tions necessitates the evaluation of VQ. This can be done using the nonconservative

expression (17), or basing it on the conservative definition

= (89)
.g

v s

The second form leads to a more complex expression, but is more consistent with

the finite-volume philosophy. It also has some computational advantages, which will

be indicated presently. Applying Eq. (89) to an auxiliary cell centered at i 4- ½,j, k,
one obtains

= -

+ S,"+_,i+ _,k Q_+i,_+_,k -- S]+_,i-_,k Q_+i,S-_,k (90)

+S t_+_,S,k+i Q_+½,S,k+½-- S_+_,S,k-_Q_+½,S,k-½)IVy+½,_,k.

The geometric terms in Eq. (90) can be obtained in two ways. The vertices of the

auxiliary cell can be defined as vectorial averages of the vertices of the original cells,

and the exact expressions for areas and volumes can then be applied to them. Since

true conservation for the auxiliary cells is not required, the averages of the areas

and volumes of the original ceils can be used directly to define the corresponding

quantities for the auxiliary cell. The second method is more efficient, particularly
for three dimensions.

The values of Q in the first two terms, corresponding to the longitudinal compo-

nent of the gradient, are already given. The remaining values, which contribute to

the transverse components, must be determined by suitable averages. For example

one can define Qi+½,d+½,k as

1.

Q_+½,S+½,k= 7(Q_,s+l,k + Qi+l,j+l,k 4- Qi,.i,k 4- Qi+l,j,k). (91)

The sum of the contributions of the last four terms in Eq. (90) using Eq. (91) for

Cartesian coordinates does not involve Qi,d,k or Qi+l,j,k. If relaxation methods are
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used to advance the solution in time implicitly,these terms willaffectthe diagonal

dominance of the iterationmatrix only weakly due to the nonuniformity of the grid.

On the other hand ifQ_+_j+_,k isdefined as

or

1

Qi+½,j+½,k= _(Qi,j+1,k+ Qi+1,y,k) (92a)

1

Q,+½,j+½,k = _(Qi+l,y+l,k + Qi,y,k), (92b)

the last four terms in Eq. (90) can be combined to improve the diagonal dominance.

This was pointed out in Ref. 36, where criteria are given on the use of Eq. (92a) or

(92b).

The nonconservative form of (VQ)_+],y, k based on Eq. (17) is usually applied

in the thin-layer approximation, with the transverse components neglected. Using

Eq. (18), it can be written as

(VQ)iq-_,3",k _ S_i% _,j,k (QiWl,j,k -- Qi,_,k)/YiT_,J,k , (93)

with a simple average defining Vi+½,i, k. If the transverse terms are required, they

can be written in several different ways, using expressions such as

(v.)_,j,k = sT,¢,k/v,,j,_, (94)

with a simple average now defining S_,j, k. Note that the transverse terms do not
affect the diagonal dominance in the nonconservative form. All the above relations

for the gradient can be used for the transpose by reversing the order of the terms

in all products. The divergence is obtained by employing a dot product for all the

products.

The nonconservatlve form of a transport term can be related to the analogous

finite-difference expression. Consider a flux of the form aVQ, where c_ is a scalar

function of Q. For the longitudinal component of the flux integral over face i+½, j, k,
the finite-volume expression is

('_/V),+_,i,kS_+],_,k "_S_+__,j,k(Q_+_,i,k-- Q_,j,k), (95)

where (a/V)_+],i,k is defined by a simple average. The analogous finite-difference
expression is

• + .,+ •S,_+_,¢,k/_+,,i,_)(Q,+,,i,_- Q,,j,k).
(96)
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It is interesting to compare these two equations (and the corresponding ones for face

i- _,3,1• k) with Eqs. (79) and (80) that relate the inviscid flux integrals. We first

note that the finite-volume expression (95) is now a little simpler. A more significant

factor is the presence of the volumes in the flux integrals required to calculate the

gradients. If a central difference approximation is used to determine the volumes

using Eq. (15), the contributions of the finite-difference flux integrals for cell i,j, k

involve the position vectors ri+2,i,k and r_-2,i,k. Thus the dependence on the grid

geometry due to the transport terms is less compact. This could lead to additional

errors for grids that are not smooth, and near flow region boundaries. One also

notes that the numerical telescoping of the finite-difference transport flux terms is

with adjacent cells. It is thus inconsistent with the telescoping of the inviscid terms.

Since the transport terms give no contribution for a uniform flow, they play no role

in satisfying Eq. (6). One can thus use Eq. (81) to calculate surface area vectors

appearing in Eq. (96). Similar conclusions can be obtained for other forms of the

flux representing transport terms. The transverse component of the flux integral

has the same behavior as the inviscid flux integral and has the same telescoping

property. It does exhibit the lack of compactness of the longitudinal component

due to the presence of the volumes.

Potential Flow

Another important case where gradients must be calculated is potential flow. For

an irrotational flow the velocity is given by

u = re, (97)

where ¢ is the velocity potential. If one further assumes the flow is isentropic, the

momentum equation has the general Bernoulli integral

h : - - lV¢. V¢ + re. r,. (98)

Here h = e + p/p is the specific enthalpy and C(r) is an arbitrary function of r. In

most problems C is a constant. An arbitrary coordinate transformation has been

included. The integral is valid for an arbitrary equation of state. For the given

entropy, the density is some known function

p = f(h). (99)

For the special case of a perfect gas f(h) is simply a power of h. Since the state

of the fluid is completeiy determined in terms of ¢ by Eqs. (97), (98), and (99), ¢

serves as the single primzry variable Q that defines the flow. The conservation of

mass, which has not been used so far, then serves as the single conservation law
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that determines¢. We thus have U = p, P = 0 in Eqs. (1) or (13), with G = 0 in

Eq. (2). Both F and U are now functions of V¢.

There is a fundamental difference in the use of the potential as a primary variable,

since only its gradient has physical significance. This can be seen by considering a

very simple solution of the potential equation, namely uniform flow with velocity

uoo. The corresponding potential solution is

¢ = Uoo• (100)

One cannot specify such a flow numerically without defining precisely the locations

of the position vectors r at which the potential ¢ is discretized. While this is an

obvious statement from a finite-difference viewpoint, in the finite-volume methods

considered up to now the variables associated with a cell were not precisely localized.

There is an important consequence in the way gradients are calculated. Applying

Eq. (17) to Eq. (100) one obtains

V¢ = uoo- (V_r_ + V_r, + V_'r_). (101)

The terms inside the parentheses represent the identity tensor analytically. Numer-

ically, terms such as r_ are approximated the way ¢_ is treated, while the gradients

of the coordinates are obtained from Eqs. (14), (15), and (18) by approximating

r_, etc. in some manner. In order to obtain the identity tensor numerically, and

produce the uniform velocity, the two difference approximations must be the same.

This result was first obtained in Ref. 37. It also follows from Eq. (98) that for

a moving grid rr must be differenced the same way that Cr is treated. In some

algorithms, the velocity and density may be calculated at different points, therefore

employing different difference approximations for the derivatives of ¢. The corre-

sponding derivatives of r used to calculate the gradients of the coordinates must
therefore also be different.

From the above discussion it follows that for a finite-volume method, in order

to preserve a uniform flow , ¢ must be defined at precise locations, and the same

approximations must be used for the derivatives of ¢ and the corresponding r in

calculating V¢. In this respect the finite-volume method for potential flow has

some of the trappings of a finite-difference method. A clear distinction can still be

made in the way the cell geometry is handled. If the potentials are defined at cell

centers, the cell vertices must be defined and used to calculate areas and volumes

in a finite-volume method, in a finite-difference method, the position vectors at the

cell centers are differenced in the same manner to calculate both the gradients and

the geometric quantities appearing in Eq. (20).

For steady-state algorithms, the areas of the cell faces are the only relevant ge-

ometric quantities. Two such algorithms are the finite-volume method of Jameson
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and Caughey (Refs. 38 and 39) , and the implicit algorithm of Holst (Ref. 40),

as extended by Flores et al (Ref. 37), and Thomas and Holst (Refs.41 and 42).

The second algorithm isthe basis of the two-dimensional code TAIR and the three-

dimensional code TWING, both considered finite-differencecodes. But according

to the definitionsgiven above, the finite-volume and finite-differencelabelsshould

actually be reversed.

In both methods the conservation law is applied to secondary cells whose vertices

are obtained as vectorial averages of the primary grid points at which ¢ is defined. In

the method of Jameson and Caughey, all derivatives such as ¢_ and r_ are obtained

at the secondary grid points by centered box differencing, and are then used to

calculate fluxes such as F¢ at these points. A numerical flux such as _'_+_,j,k in

Eq. (54) is then obtained as the average of the values of F_ at those secondary grid

points that are the vertices of the i + ½, j, k face. These fluxes are further modified

by adding recoupling terms to undo the effects of odd-even decoupling, and explicit

artificial viscosity terms to stabilize the calculation in supersonic regions. The

above procedure constitutes a finlte-difference method according to our definition.

As is the case for the Euler equations, the area condition (6) is satisfied for two-

dimensional flow, but is violated for three-dimensional flow. In the latter case the

box differencing applied to r is equivalent to a secondary grid with piecewise straight

connections, and each face is the sum of four piecewise facets. The averaging of the

fluxes at the four vertices does not correctly sum the areas of the four facets for a

uniform flow. As discussed in Ref. (39), numerical errors for a uniform free stream

in three dimensions are removed by subtracting free-stream fluxes from the basic

equation.

In the TWING code derivatives of ¢ and r are obtained at the centers of the

secondary faces i + ½, j, k, etc. by centered differences of known values at the pri-

mary grid points. These are then used to calculate u and p at the face centers.

The surface area vectors are calculated from Eq. (60b) in terms of the known posi-

tions of the vertices. The secondary grid is therefore assumed to have straight line

connections. The flux integral is then calculated from Eq. (72). Stabilization in

supersonic regions is accomplished by upwinding the density. In order to minimize

storage, p is only calculated on _ coordinate faces, where the _ coordinate is chosen

to be approximately aligned with expected shock surfaces. Its value at other faces is

obtained by centered averages. The procedure constitutes a finite-volume method

applied to secondary cells. Note that in two dimensions, the expression for the

surface area vector as calculated from Eq. (64) in terms of the vertices is identical

to the corresponding derivative of r at the face center by centered differences. In

this case the distinction between the two labels disappears. This is due to the fact

that for steady-state potential flow the flux is only a function of V¢, and compact

differencing is obtained by calculating the fluxes directly on the cell faces.
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The above discussion makes it clear that away from boundaries there is a blur-

ring of distinction between finite-difference and finite-volume methods. In a finite-

difference method, an auxiliary finite volume grid can be constructed, and the rele-

vant geometric terms can be calculated from it in order to eliminate those sources

of error. Conversely, in a finite-volume method it may be necessary to construct an

auxiliary finite-difference grid in order to calculate gradients properly.

MOVING GRIDS

For an unsteady flow, a grid motion can in general influence the solution of

conservation laws in three different ways. It affects the convective part of the

flux due to the presence of the grid velocity in Eq. (2). This is particularly true for

upwind-biased approximations. The surface area vector over which the flux is acting

will in general change in both magnitude and direction. Finally, if the grid motion

is not rigid, the volume of the element will undergo change. It potential flow, there

is also an additional dependence of p on the grid velocity, as shown by Eqs. (98)

and (99). In the previous section we saw that in a finite-volume method the grid

points are treated in a different manner to calculate geometric quantities than the

way they are used to calculate gradients. Similarly, the temporal treatment of the

grid points will be different in calculating the change in geometric quantities than

in the calculation of grid velocities in Eqs. (2) and (98).

Grid motion relative to a fixed reference frame has been previously studied by

Thomas and Lombard (Ref. 3). The effect of a non-lnertial reference frame has

been treated by Holmes and Tong (Ref. 11) for constant rotation and an explicit

integration scheme. A generalization and unification of these results is presented

here. If a rotating non-inertial reference frame is utilized, one has the choice of

performing calculations with the fluid velocity components defined with respect to

the inertial or non-inertial frame. In the latter instance it is generally assumed that

external source terms must be present due to the rotation of the non-inertial frame.

We discuss both situations, and demonstrate that one can perform the numerical

integration without source terms, thus preserving the strong conservation-law form.

For concreteness, the discretization of general two-level implicit schemes will be

presented.

In the finite-volumemethod, the grid velocity|streated as a geometric quantity,

and isinterpretedas the rate of displacement of a cellface. In the standard finite-

differencemethod, the grid velocity isnormally treated as a flow variable,and is

combined with the fluidvelocityto definea transformed velocity.This gives riseto

unavoidable errorsin a uniform free stream. Therefore itis necessary to treat the

grid velocityin a finite-volumemanner to achieve a proper finite-differencemethod.

For this reason, the finite-volume formulation will be given in some detail,and

the relevant changes for the finite-differenceformulation will be indicated. Note
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that the procedures developed in this section are also applicable to space-marching

algorithms in which the grid changes in the marching direction.

Formulation of General Grid Motion.

Let r*(t) be the position vector of a point relative to a non-inertial reference

frame. Then the corresponding vector relative to an inertial frame has the general

form

rCt)= r0Ct)+ cCt). r'Ct), (102)

where C is an orthogonal rotation tensor satisfying

c. c T = I. (103)

The absolute velocity v of the point is given by Eq. (3) as the sum of

vr = _o+ C.r* (lO4)

and

vc=C._*. (105)

Here $ indicates differentiation of x with respect to time for any quantity x. The

velocity vc may be due to the motion of a prescribed boundary surface or the use

of a flow-adaptive grid. The latter may result from the motion of a free surface or

the changes in some flow gradients. In the most general situation it could depend
on all three.

According to the finite-volume philosophy, the geometric effects due to the grid

motion are treated separately from the changes in the physical variables. Thus for

a cell face with surface area vector Sit ) we define

6V - n . v dS dt (106)
1

sct)

to be the volume swept out by the face during the time interval At. 6Vr and 6Vc

are similarly defined in terms of v_ and vc. Only the sum of the 6V_ for all the

cell faces contribute to the change in cell volume. The time averaged surface area

vector for the cell face is defined as

sct)

ndS dt, (107)

and the time averaged normal component of the velocity of the cell face is then

_. = 6v/(Y,At). (108)
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It will be convenient to express certain absolute directed vector quantities in the

non-inertial frame. We thus define

u*=C T.u, v* =C T-v, n* =C T.n. (109)

Note that u* and v* are not velocity vectors relative to the non-inertial frame. Let

B" =cT.c (11o)

be the antisymmetric angular velocity tensor whose components form the corre-

sponding angular velocity vector fl*, where

B* .r* = 12" × r*. (111)

If we further let

* = C T"/'0,V0

then Eq. (104) can be rewritten in the non-inertial frame as

$ r*.v; =Vo + fl* x

(112)

(113)

Discretization with Velocity Expressed in Inertial Frame.

Assume that the fluid state is given at time n. In general, the position vectors

r* of the grid points, as well as the quantities ro and C defining the orientation of

a non-inertial reference frame, will be assumed known at times n and n + 1. Thus

the grid is assumed to be updated explicitly, even if the flow variables are updated

implicitly. Unless stated otherwise, we adopt the notation

Ax = x n+l -- x n (114)

and

1 n xn+l
._ = _(x + ) (115)

for any quantity x. The spatial indices i,j, k are omitted for brevity in this section.

In applying the finite volume method to Eq. (1), the difference in volume integrals
on the left-hand side can be written as

z_(uv) = v "+'AU + U" ZXV. (116)

In evaluating the time integral of the average flux over a face, all geometrically

defined quantities are assumed held constant at their time-averaged values. The

flux term can then be approximated as

[(1 - 0)Fn n + 0F_+']S At, (117)
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wherethe quantities n and v,_definedby Eqs. (107) and (108)areusedin evaluating
F,_ -- n • F at both time levels. These same quantities are also used in evaluating

the flux Jacobian A matrix when time linearization is used.

It is simpler to calculate the geometric quantities in the non-inertial reference

frame. From the known position vectors of the cell vertices, the surface area vectors

S*, area moments M*, and cell volumes V can be obtained from Eqs. (60) through

(63) at times n and n + 1, and their time averaged values calculated from Eq. (115).

(17" is required if a production term is present in Eq. (1).) The conservation of

volume condition (9) can be satisfied by calculating _Vc for each face exactly from

the known positions of the four vertices at times n and n + 1. A simpler method

is to obtain an approximate displacement 6r* as the average of the Ar* of the four

vertices, and calculating 6Vc from

6Vc _ S*. 6r*. (118)

One must then use the sum of the 6Vc of the six faces in place of the true AV in Eq.

(116). The simpler method should normally suffice, although second-order accurate

algorithms with very large grid distortions may require the exact procedure.

If the grid is given in a non-inertial reference frame, one obtains _Vr for each face
from

= + g *)zxt. (110)

Since the S* and ]VI* satisfy Eqs. (6) and (8) when summed over all the faces, the

6V,. will sum to zero, as required by rigid body rotation. The angular velocity 1_*

is obtained from the components of t]* calculated as

t3" = 1(_ T. AC. (120)
At

One can readily show that Eq. (120) results in an antisymmetric tensor. The trans-

lational velocity V_ is similarly calculated as

V_ = _t CT. Aro. (121)

The surface area vector S in the inertial frame can be calculated from

s = ½[c". (s')" + c "+'. (s') "+1] (122)

or

S=C.S'. (123)
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The second expression is simpler, and differs from the first by an error of order

(At) 2 Note that for both expression S will differ from _* by that same order of

error.

The final step is the calculation of v,, from Eq. (108), where

= 6vo+ 6yr. (124)

Any finite-volume algorithm discussed in the previous section can now be applied,

with the grid motion included in the calculation of the flux. The change in cell

volume due to grid distortion manifests itself as an additional explicit term, as

shown by Eq. (116).

In a finite-difference method, the positions of the cell centers are known at times

n and n ÷ 1. Since the grid motion just affects the convection part of the flux, it

is sufficient to examine the inviscid flux terms only. For central-difference approxi-

mations, the integration of Eq. (20) over a time interval results in expressions such

as Eq. (80). The evaluation of geometric quantities at each grid point is done in

a manner analogous to that in the finite volume method, taking into account that

conservation is effectively applied to a doubly sized cell. Condition (21) is satisfied

by calculating the surface area vectors from Eq. (81) in terms of the positions of the

vertices of the doubly sized face passing through the grid point. The area moment

can be analogously evaluated by applying Eq. (61) to those vertices.

Since the central-difference approximations for the effective cell volumes do not

define a precise volume, one must obtain an approximate 6Vc from Eq. (118), with

6r* replaced simply by Ar* at that grid point. (It is possible to calculate a volume

for the doubly sized cell that is consistent with the area formula (81), using either

Eq. (62) or (63). With this additional complexity, any advantages of the finite-

difference discretization are lost, and it is better to go directly to the more compact

finite-volume discretization.) The summation of the 6Vc (with appropriate signs)

for the six faces of the doubly sized cell to obtain the appropriate AV to use in

Eq. (116) is equivalent to solving Eq. (22) by central differences. The importance

of using Eq. (22) was first pointed out in Ref. 3. The effects due to a non-inertial

reference frame are handled precisely as in the finite-volume case.

Discretization with Velocity Expressed in Non-Inertial Frame.

For many applications in which the grid is defined in a non-inertial reference

frame, it is more convenient to employ velocity components referred to axes fixed

in that frame. The momentum conservation law for these components requires the

presence of source terms. There is an analogy with the use of curvilinear coordinates,

where the momentum equations for the curvilinear velocity components introduce

source terms. But these terms can be eliminated by writing the equations for the
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Cartesianvelocity componentsinstead. Similarly, by employing componentsof the
absolute velocity (as expressed in the non-inertial frame), one can also eliminate
the source terms.

Let the column vectors U* and F_, and the matrix A* be defined in terms of u*

v* and n* given by Eq. (109). Using the rotation matrices

[ 0i]clC= C , =

0 10i]0 C T

0 0

(125)

one can write the transformations

U = CU*, F, = CF_,, A = CA*C -_ (126)

In order to reproduce a uniform flow in the inertial frame using an implicit scheme,

one must use an incremented quantity proportional to AU, where

AU = C"+IAu ° + ACU *'_. (127)

This suggests defining

AU* _ (C-I)n+IAU (128)

and

[00 1[_* -- _tl(C_1)n+,AC= O0 _*0 '
(129)

where

I3"= 1 T .+t (130)_t(c ) •Ac.

Note that ]3" differs from ]_* by a term of order (at), and is therefore not anti-

symmetric. Equation (127) can now be rewritten as

Av* = At* - _*v*" At. (131)

The second term is only present in the momentum equation, where it represents a
numerical Coriolis correction.

Before writing the implicit equation for AU*, we define the tensor

i --=(cT) "+1. C" = I- 13" At, (132)
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and the corresponding matrix operator

- (C-*).+*C. =[10 _

0 0

(133)

Note that they differ from the identity tensor and unit matrix, respectively, by terms

of order (At). Premultiplying Eq. (116) by (C-1) "+*, we obtain for the difference

in volume integrals the expression

V "+IAO* + iU*" AV. (134)

The corresponding flux integral can be written in the time linearized form as

(iF,_+ A A )_*At. (135)

Equations (134) and (135) define an implicit algorithm to calculate A_'*. This is

then corrected by the Coriolis term using Eq. (131). The scheme is fully conserva-

tive, and preserves a uniform free stream. Note that in order to achieve the strong

conservation-law form it is necessary to use the dot product of the explicit term in

the momentum equation with I, and to use the proper numerical representation of
the Coriolis term.

The fluid velocity vector relative to the non-inertial frame is given by

u*' - u* - v*. (136)

In order to calculate it one requires v* at cell centers at times n and n + 1. The

positions of the cell centers are given for a finite-difference method. For the finite-

volume method one must define the location of the cell center when the non-inertial

frame undergoes rotation. This situation is similar to the one discussed previously

for potential flow. In addition, in order to achieve second order accuracy in time,

one must know ro, C, and r* for each grid point at three time levels. Thus, using

Eq. (136), one can treat the relative motion in an arbitrary non-inertla! reference

frame in a completely conservative way.

TREATMENT OF BOUNDARIES

The treatment of flow region boundaries depends on whether conservation is ap-

plied to cells defined by the primary or secondary grid. These will be referred to as

finite-volume and finite-difference grids, respectively, even though the finite-volume

and finite-difference methods can be applied to grids of the other family. The most
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physically satisfying way of treating boundaries is based on characteristics consider-

ations. This is a natural procedure for upwind methods, and the most appropriate

for open boundaries. Since this procedure is fully described by Chakravarthy (to

be published), we discuss only those that use the basic equations as applied to wall

boundary conditions. These can be conveniently divided into two main classes. In

one class the unknown variables on the wall are integrated together with those at

interior points by an appropriate application of the conservation laws and bound-

ary conditions. In the other class, the unknown boundary quantities needed to

calculate flux terms at interior points are obtained using extrapolation, reflection

principles, or some auxiliary equation. We will show how the conservation laws

can also be utilized in this second approach. Both approaches will be discussed for

finite-difference and finite-volume grids. Note that questions of stability and pro-

gramming efficiency, although both very important, are beyond the scope of this

paper. The type of grid also plays an important role at zonal boundaries and in the

treatment of grid singularities. These topics are also treated in this section. Only

stationary grids will be considered for simplicity.

Wall Boundary Conditions for Finite-Difference (]rid.

Let the wall be a constant _ surface with index k = 1. Associated with the

boundary point i,j, 1 is a secondary grid half-cell whose center is designated as

the point i,j, 5_, as shown in Fig. 2. Since the points rij,0 do not exist, the finite

difference expressions for S t and V previously derived for interior points are not

valid at the points i, j, 1. These quantities are required to calculate transport terms

for points i,j, 2 and i,j, 1, as well as the geometry of the boundary half-cells. The

simplest way to modify the interior formulas is to replace rij,0 by ri,j,1, and multiply

the final result by 2. As an example, formula (81) becomes

1 r
S_,j,I = 5( /,j+1,2 -- ri,j-l,l) X (ri,j-l,2 -- ri,j+l,/). (137)

The use of first-order instead of second-order accurate one-sided expressions is ac-

tually preferable for two reasons. It prevents possible unphysica] answers (e.g.

negative volumes) for grids with spacing discontinuities. It is also necessary in or-

der to satisfy Eq. (6) for the doubly-sized half-cell associated with the boundary

point. When calculating transport terms at point i,j, 1 using Eqs. (17) and (18),
one should use

(Q¢)id,1 = (Qi,i,2 - Qi,i,1)/A_ (138)

for consistency. Therefore the point i,j, 2 should be chosen close enough to the

boundary to be in the linear range of the variation of Q when transport terms are

important.

Extending the work of Thomas (Ref. 43), we apply Eqs. (20) and (54) to the

half-cell centered at the point i, j, _. Second-order accurate spatial differencing
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yields

(0_),,j_+ 2C_:,;,_- P,_,i,,)/A_
p_+( ,+_,j,_- _,__,j,_)/A_+ (P,";+,,_,- P_,._½,t)/a_ = o,

(139)

where

^ 3 1 V,

v,,s,,_ = (Tu,,s,1 + 7u_j,2) ,,s,1, (14o)
! F

_li j, il -----SDiXj,I" (43--Fi+li,y,1 -t- _ i+½j,i),etc.

Note that a partial finite-volume approximation is employed. Thus we use Vi,i,1 and

S_+I,j, 1 (instead of their values at k = _), since these have already been defined so

as to satisfy the geometric conditions.

We can eliminate Uij,i using the conservative difference approximation at point

i,j, 2. Introducing

fl -- Vi,j, l lVi,i,1, (141)

we obtain for the second order accurate conservative spatial differencing of Eq. (20)

at point i,j, 1 the relation

(Cs,),,;,,+ _-[-nP:,;,_+ (8+ n)P:,;,,- sP,<;,,i/ar

_ ,,s_l,1)/a, = 0,
(142)

where

1 (S_+] -/_S_+ etc. (143)F:+lx,j,l - _,i,1 -t- _ ,i,1 ix,S,2) "Fi+½,i, l'

An important special case of Eq. (142) results from the solid wall condition

(S s'. m)i,S,1 = O, (144)

valid for all flows. By combining Eq. (144) with the dot product of S_,j, t and the

second component of Eq. (142), one obtains a tlme-independent relation expressing

the conservation of normal momentum at the boundary point.

Consider first the solution of the Navier-Stokes equations for a perfect gas. The

no slip condition

mi,y,1 = 0, (145)

also results in

Pi,i,1 - _ei,j,l. (146)
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If the wall temperature is prescribed, and ew is the wall specific internal energy,

then we also have the condition

el,j,1 = _wPi,j,1. (147)

Thus there is only one unknown variable on the wall.

For the first class of methods, Thomas (Ref. 43) suggests using the continuity

equation, since the boundary conditions supplant the momentum and energy con-

servation laws. The first component of Eq. (139) or (142) would thus be the missing

equation to use in an implicit algorithm. Due to the presence of Uij,2 in Eq. (139),

it is perhaps more appropriate to use Eq. (142), since the boundary conditions only

specify the time derivatives of Uid,1. Actually, the wall temperature condition only

relates ei,i,1 to Pi,j,1 through Eq. (147), so that one could integrate the energy equa-

tion instead. Whichever equation is chosen, conservation for the remaining conser-

vative variables will not be precisely satisfied for the boundary half-cell. Therefore

some interior numerical flux terms will not be precisely cancelled, and conservation

of some variables for the entire flow region will be violated in an integral sense.

As pointed out by Mehta (private communication, 1985) any independent relation

can be used to integrate Uid,1 with time. The time-differenced form of the normal

momentum equation obtained from the second component of Eq. (142) provides such

a relation for the pressure. This can then be used instead of the energy equation, in

view of Eq. (146). The use of the time derivative of a conservation law, as opposed

to its direct employment when solving the continuity or energy equation, can have

important implications in the implementation of a factored implicit algorithm. This
is discussed further below.

For the second class of methods, the pressure is the only unknown wall quantity

needed to calculate flux terms when applying the conservation laws at interior points

i, j, 2. The time-independent conservative normal momentum equation at the point

i,j, 1 provides a relationship between the wall pressures and quantities at interior

points. In implicit algorithms both the direct and time-differenced forms of this

relationship are required. In this respect the second method has aspects of both
versions of the first method.

The practical implementation of all of these approaches could require further

approximations which decrease the spatial or temporal accuracy of the algorithm

at the boundary, and may involve a restriction to orthogonal grids. A factored,

implicit, central-differenced implementation of Eq. (139) can only be first order

accurate in time due to the presence of Ui,j,2. Flux terms such as Fi+_,j, 2 must

be treated explicitly, tb_s again reducing the temporal accuracy to first order. One

can maintain second order accuracy in time by letting Uid,2 = Ui,j,1 and Fi+ _ d,2 =

Fi+],i,1, but then the spatial accuracy is reduced to first order. If one uses Eq. (142)

37



instead of (139), one must still treat some flux terms explicitly and suffer a loss in

temporal accuracy.

Another problem arises with the use of the time-differenced normal momentum

equation for large wall curvature or severe non-orthogonality in the grid. Under

those circumstances the pressure change at point i, j, 1 is coupled to the pressure

changes at neighboring points on the boundary as well as the points i,j, 2 and i,j, 3.

In an implicit updating of Ui,i,1 using this equation, all spatial difference operators

operating on AUi,j,1 are of order one. Consequently a factored implicit algorithm

is not possible. Similarly, in the second method a factored implicit treatment of the

boundary flux for point i,j,2 cannot be accomplished. Thus the use of the normal

momentum equation in a boundary procedure for factored implicit algorithms is in

principle limited to moderate wall curvature and only small non-orthogonality in

the grid. Fortunately in most practical situations the grid spacing in the _"direction

is much smaller than the gr:'d spacings along the boundary. The resulting coupling

of pressure changes at points on the surface is negligible, and the above restrictions
can be removed.

If the heat flux qw is prescribed at the wall instead of the temperature, condition

(147) is replaced by

(kn. V,)i,j,1 = -cvqto, (148)

where k(e) is the thermal conductivity and cu is the constant specific heat at con-

stant volume. Using Eq. (145) one has the identity

=v(e/p),,i,1. (149)

For steady-flow calculations, Hung and MacCormack (Ref. 44) suggest using VH to

evaluate the wall heat flux, since the total enthalpy H has a more linear behavior

than e. For unsteady flow, it is probably more appropriate to use V(e/p). In

the first method of satisfying the boundary conditions, one now integrates both

the continuity and energy equation at point i,j, 1 using either Eq. (139) or (142).

The alternative approach uses the time-differenced forms of the normal momentum

equation and Eq. (148). These two equations are also used in the second method

to calculate boundary flux terms when updating Ui,i,2.

For the solution of the Euler equations the only boundary condition is Eq. (144).

In the first method of treating the boundary one would now integrate the continuity,

energy, and tangential momentum equations at point i, j, 1 using either Eq. (139)

or (142). Alternatively one could use the time-differenced form of the normal mo-

mentum equation instead of the continuity or energy equation. Since the pressure

is the only unknown required to evaluate boundary flux terms, one would only need

the normal momentum equation to apply the second method. However if the wall

curvature is not negligible, the expression for the pressure at point i,j, 1 involves the
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velocity and density (as well as the pressure) at neighboring points on the bound-

ary. For example, the central difference approximation to the normal momentum

equation using Eq. (142) produces the boundary terms

3Af

(s- st - [(u,+1,i,x.s ,i,1)(pu. + s ,s,1.(psi),+1,j,11+""
(150)

There are severalways to evaluate these new unknown quantities.The simplest is

to replace them by theirvalues at the closestinteriorpoints,with an attendant loss

of spatial accuracy. A more accurate procedure isextrapolation of interiorvalues

to the boundary. In the spiritof the conservation laws it is more appropriate to

extrapolate p and m = pu, with the latterthen projected onto the surface to satisfy

Eq. (144). If the grid is highly non-orthogonal, extrapolation should probably be

done in the directionnormal to the surface,rather than along the _"coordinate. A

third possibilityisto utilizeEq. (139) or (142) to update p and m on the surface

afterthe interiorpointshave been updated. This isthe most rationalprocedure, and

should probably be used in the calculationof highly unsteady flows. As discussed

earlier,an implicit treatment of the pressure at point i,j,1 is not feasible in a

factored implicitalgorithm forlargewall curvature or severe gridnon-orthogonality.

For potential flow there isonly one conservation law, and Eq. (144) gives the

required boundary condition. Due to the manner in which the velocity potential ¢

on the boundary isused in solving the equation at point i,j,2, one must use the

firstmethod to satisfyEq. (144). The proper procedure isto solve Eq. (139). This

ismore accurate than using simple reflectionprinciples.

Wall Boundary Conditions for Finite-Volume Grid.

Let the wall be a constant f surface and the boundary cellbe designated as i,j,1.

The boundary face then has the designation i,j,_. The position vectors

1

r. ! • , - _(ri+!.'+! a+ri+½;q-ll)s± _ ,$:i:_,1 2,J 2 I JJ 2 _2
(151)

and ri__l_2,_;+x_,] are the vertices of a boundary half-cell whose center is designated

as the point i, j, 3, as shown in Fig. 3. In order to calculate transport terms and

describe the geometry of the boundary half-cell we require the quantities S i,j, 1 '

Vij,] , and S/_-x-2,J,2_' 1. Si,j.,if is defined by Eq. (60) in terms of the vectors ri+],j+], 1.

Vi,j,], and S/__l ; I are defi_ed as twice the corresponding expressions for the half-
--2_J_2

cell. Thus

(152)i+1 .1 =(ri+½,j+],l-ri+½ • 11)×(r/+1 - ln-_,2 2n_2,1-ri+]n+_,n. 1 _)"
2 '-_2
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When calculating transport terms at points i,j, 1 and i,j, ½ using Eqs. (17) and
(18), one should use

(Q;)i,#,l = (Q;)',#,_ = 2(Qi,1,I -Qi,y,])/Af. (153)

Applying Eq. (5) to the boundary half-cell centered at the point f,j, _, one obtains
the second-order accurate expression

(_,)_,s,i + 2[(s_. F)_,i,,- (S_•F)_,i,_]

+ _'_+_,;,i- #'_-_,J,i + #_" - p_-'_ -- 0,1,3t2 __ lp# 2m 4

(154)

where
1

_]d,j,a, =-_(Ui,j, _ -k Ui,j,1)Vi,j,], (155)
^_ 1

F_+½,i,_, - _(S_+½,Y,½ • (Fi+½,#, _ + F_+],/,1),etc.

Note that we use Vi,y, ] and S__1 ; ! (instead of their values at k = _), since these
--21JJ2

have already been defined so as to satisfy the geometric conditions.

We can eliminate Ui,#,l using the finite volume approximation for cell i,j, 1. In-

troducing

# =_v_,j,_/v,,s,,, (156)

we obtain for point i, j, ½ the second order accurate conservative relation

(u,v),,j,_ - #(s_ •F)_,_,]+ 4(st. F)_,;,1- (4- #)(S_ •F),,;,_
+ - . _- + - #",,j_½,_ - 0,

(157)

where

__,,, = .F)i+½,#,½+(S ½,J,½-flS ½,#,l).Fi+½,y,_,etc.

The treatment of wall boundary conditions for finite-volume grids basically follows

that described for finite-difference grids, with Eqs. (139) and (142) replaced by

Eqs. (154) and (157), and the finite-difference boundary point i,j, 1 replaced by
1

the finite-volume boundary point i, j, _. Note that conservation of all conservative

variables for the entire flow region is automatically satisfied when a finite-volume

grid is used. The purpose of introducing a boundary half-cell in this case is to relate

boundary values to interior values in a conservative manner.
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One can again apply the first method of treating the boundary. Note that in

this case there are two boundary cells, both sharing a common boundary, that need

special treatment. The boundary variable Ui,j,1 now represents an average value of

U over a cell face instead of a cell-averaged quantity. The points i,j, ½ and i,j, 1 are

a half-cell width apart. All these factors make an implicit algorithm more involved

near the boundary. Nevertheless it is probably worth pursuing if one requires exact

conservation in the integral sense and accurate representation of all flow variables

on the boundary.

The second method of treating the boundary is obviously the natural one for a

finite-volume grid. The normal momentum equation based on Eq. (157) can be

utilized to various degrees of approximation for this purpose. Since the point i, j, 1

is closer to the boundary than the corresponding point for a finite-difference grid,

one would expect these approximations to be more accurate for the finite-volume

grid.

Zonal Boundaries.

Another situation where the difference in the type of grid is important is the

case where the boundary is a zonal boundary between two regions with completely

disparate grids. The two types of grids are illustrated in Fig. 4 for two dimensional

flow. For the finite-difference grid, the dots show the location of the grid points in

one zone, and the squares the grid points in the other zone. A conservative zonal

boundary procedure requires the interpolation of data between the two grids on the

zonal boundary, and the partitioning of flux on a flux conservation line arbitrarily

chosen to lie in one of the two zones. Special handling of the fluxes is required on

sides AFE and BCD of the cell straddling the zonal boundary. Excellent results

have been obtained in flow calculations using this procedure by Rai (Refs. 45-47). A

finite-volume grid adapts more naturally to the zonal boundary, as shown in Fig. 4b.

The partitioning of the flux can now be carried out directly on the zonal boundary,

leading to a conceptually simpler algorithm. Calculations using a finite-volume

grid have been carried out by Eriksson and Rai (to be published) and Walters et al

(Ref. 48).

For both types of grids, the above mentioned zonal procedures carry out the

partitioning of the flux in terms of the normal flux component Fn. As pointed out

in Refs. 45 and 48, if the flux conservation line is curved one cannot simultaneously

conserve the flux and maintain a uniform free stream. However, for a finite-volume

grid an alternate procedure is possible which can accomplish both objectives. For

a given boundary cell one can define a separate boundary face for each cell in the

other region. Thus the zonal boundary of cell 1 in Fig. 4 consists of the three faces

FE, ED and DC. If a _mique flux is assigned to each boundary face, then both flux

conservation and free-stream maintenance is possible. For first-order accuracy, the

flux across FE is calculated from U1 and U2; the flux across ED from U1 and U3;
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and the flux across DC from U1 and U4. Higher order flux calculations will involve

more complex dependence on the values of U in neighboring cells. The MUSCL

approach, which was also used in Ref. 48, is probably the best one in this situation.

Note that boundary faces for three-dimensional zonal boundaries will no longer be

quadrilaterals in general, and expressions for a general polygonal face must be used

to calculate surface area vectors. For time-accurate calculationsin two and three

dimensions, more general formulas for volumes of polygons and polyhedra must be

used, since the boundary cellswillin general not be quadrilateralsor hexahedra.

Grid Singularities.

There are two types of grid singularitiesthat can occur on a boundary. One

is due to a physical corner occurring on a solid boundary that is described by a

single coordinate surface. The primary grid point defining the corner iscalled a

realsingular point. The other type occurs when a primary grid point on a smooth

solid boundary defines a corner in a coordinate surface. Such a point is termed

a topological singular point. For a finite-volume grid these singular points are

cellvertices,and their singular nature will not affectthe evaluation of geometric

quantities based on straight lineconnections. Since the finitevolume algorithms

do not involve flow variables at the cellvertices,the algorithms will also not be

affectedby realsingularities.Some modifications in the boundary procedure may

be necessary for cellswhose verticesinclude topologicalsingular points. In either

case a large lossin spatial accuracy can be expected, since the singular nature of

the grid or the flow isignored.

For a finite-differencegrid both U and geometric quantities must be defined for

the singular points. The non-analytic behavior of U at a realsingularitycannot be

simply expressed. Consequently itwould be di_cult to account for itproperly in a

numerical algorithm. On the other hand, the non-analytic nature of the grid at a

singular point can be expressed algebraically.This knowledge has already been uti-

lizedto generate algebraicgridswith singularcorners in Ref. 49. A similarapproach

can be used to modify a finite-differencealgorithm near a topologicalsingularity.

We illustratethe procedure for a Navier-Stokes central-differencealgorithm near an

H-type singularityin two-dimensional flow.

Figure 5 depicts the grid in the neighborhood of the H-type singularityat _ = 0

and r}= 0. The part of the coordinate liner/= 0 for positive _ lieson the solid

body, while the past for negative _ liesin the flow. We assume the two parts are

normal to each other at the singularity.The second method of applying boundary

conditions will be used, with the wall curvature neglected. All calculations that

involve quantities defined at point 0,0 will have to be modified. The geometric

quantities defined in Eqs. (14) and (15) reduce to

S t=r_ ×k, S _=k×r_, V=r_-r_ xk (159)
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for two dimensions, where k is the unit normal to the plane.

Consider first calculations for the grid point 0, 1. The grid is non-analytic between

this point and the singularity. One can easily show (see Ref. 49) that to a good

approximation

r(0, T) _, ro,o + (ro,1 - ro,o)V_-/A, (16o)

and

s' So_,l Vo,1
o,1 S¢(0, T) _ V(0, T) _-, _, (161)

s,(0,,) 4U- ' VU ' T/AT

between these two points. While r_ at point 0, 1 is calculated by the ordinary

central difference formula, rn is calculated as

(r,)o,, = (ro,_ - ro,l)/AT. (162)

With ro, _ obtained from linear interpolation, and ro, _ obtained from Eq. (160),

one can rewrite Eq. (162) as

1

(rn)°" -- 2AT [ro,1 - (v/2 - 1)ro,, - (2 - V/2)ro,o].
(163)

The geometric quantities So_,l, Sno,,, Vo,1, (V_)o,1, and (VT)o,1 are then obtained

from Eqs. (159) and (18).

The discretization of Eq. (20) at point 0, 1 requires modification of the term

(k_)o,, = (Fo;l - '_-'o,,')/AT" (164)

Fo_,] can be calculated by the standard methods in terms of quantities already
defined. The variation of the flow variables with r is analytic. Therefore between

the points 0, 0 and 0,1 we can expect the inviscid part of the flux to satisfy

F(0,T) _- Fo,o + (Fo,, - Fo,o)X/_-/AT. (165)

^17

Using Eqs. (161) and (165) to evaluate Fo,], we can write Eq. (164) as

^ 1 [F_,2- F_,, -(V_ 1)S' (166)(F;)o,,- 2aT - o,,'Fo,o]

for the inviscid part of the flux. The transverse component of the transport part of

the flux has the same behavior as the inviscid part. In calculating the longitudinal
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component, we note from Eqs. (18) and (161) that S _. Vr/is approximately constant

between the points 0,0 and 0, 1. Assuming that the dependence of both a and Q

on r/is given by Eq. (165), one obtains for the longitudinal transport flux term at
1

0, _ the relation

(aS' • Vr/Qn)o,_ = [no,1 + (v_- 1)ao,o](S n .Sn/V)o,l(Qo,, -Qo,o)/Arl. (167)

The calculations for the grid point -1,0 follow the same procedure as for the

point 0, 1, with the roles of r/ and _ reversed. At the point 1,0 the only quantity
one requires that must be modified is

1

(r_)l,o - 2_[r2,o - (vf2 - 1)r,,o - (2 - vf2)ro,o]. (168)

The only quantity required at the singular point 0, 0 is the normal gradient of Q
which eaters into boundary conditions. It is calculated as

(n. VQ)o,o = (Q-l,o - Qo,o)/]r-l,o - ro,o[. (169)

Note that geometric quantities at the singular point are undefined, and are therefore

never used. If the first method of satisfying boundary conditions is employed, one

could perform calculations for the half-polygonal cell associated with the singular
point, using the concepts described above.

All the above formulas assume that the grid is sufficiently smooth, If the grid is

generated algebraically, the techniques presented in Ref, 49 can be used to guarantee

sufficient smoothness. In numerical grid generation schemes based on the solution

of partial differential equations, the corner in the ,7 = 0 curve will propagate into the

interior using the standard procedures. One must therefore use the above concepts

to modify the numerical grid generation scheme. This involves using approximations

such as Eqs. (160) and (161) to derive appropriate difference approximations to

partial derivatives similar to Eqs. (163) and (168).

STRONG AND WEAK CONSERVATION

The analysis in this paper has been carried out using vector notation, even though

all computations are ultimately performed in terms of scalar components. This was

done for two different reasons, The formulation in terms of physical vectors is more

compact, and gives more emphasis to the physical content of the numerical methods.

Secondly, there are a number of different ways to obtain scalar equations from the

vector equations. Most of them are motivated by a desire to keep the equations in

strong conservation-law form. This terminology was coined by this author in his

earlier paper devoted to the differential formulation of conservation laws (Ref. 1). It
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refers to the form of Eq. (13) in the absence of true, physical source terms (P = 0),

in which all terms are derivatives with respect to the independent variables. The

decomposition of the vector momentum equation into scalar equations in terms of

curvilinear velocity components results in additional undifferentiated terms that act

like fictitious sources. This has been termed a weak conservation-law form by the

author. Various methods of obtaining scalar equations in strong conservation-law

form are discussed in Ref. 1. The one most often used in practice is to write the

Cartesian components of the vector conservation law. Actually, in some algorithms

(e.g. Ref. 50) it is advantageous to employ the weak conservation-law form.

In the section treating moving grids we encountered another situation that is

normally thought to require the weak conservation-law form--namely the use of

a non-inertial reference frame. It was shown there how the strong form can be

preserved by using the absolute velocity. There are two other situations that re-

sult from ignoring a space dimension in which the equations are usually expressed

in weak conservation-law form. They are quasl-one-dimensional and axlsymmetric

flow. We now show that in a proper finite-volume formulation, the undifferenti-

ated terms become boundary terms for the ignored direction. Thus the integral

conservation law can always be satisfied for these cases.

Quasi-One-Dimensional Flow.

The differential formulation of quasi-one-dimensional flow results from apply-

ing the coordinate transformation z(_) to a one-dimensional channel whose cross-
sectional area vector is

S_ = S(z)i, (170)

where i is the unit vector in the x-direction. In terms of the cell volume V = Sz_

and the velocity component u = i.u, the continuity and energy equations for inviscid

flow become

(pV)r +(puS){ = 0 (171)

and

(eV)r + [(e + p)uS]{ = O. (172)

Since there is no flux of mass or energy at the wall, these two equations are in strong

conservation-law form. The momentum equation is usually written as

(puV)r + I(P + Pu2)S]e - PSe = 0. (173)

The source term pS{ results from the pressure acting on the channel walls.

In order to circumvent the weak conservation-law form, some investigators (see

Ref. 51) write the momentum equation in the quasi-conservative form

(puV)r + (pu_S)_ + Sp_ : O, (174)
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in which differentiated terms are multiplied by geometric quantities. While this

form is strictly not conservative, it satisfies the weak form of the jump conditions

(11), and should possess the appropriate shock capturing capability. On the other

hand, the weak form is only apparent, not real. A finite-volume discretization of

the momentum conservation law for cell i gives

V,(pu)ri + [(p+ pu2)S{i+_ -[(p+ pu2)Sl,_½ -pwi(Si+ ½ - Si_½) =0. (175)

Here pwl is the average pressure acting on the cell wall, while p_ is the average value

of p throughout the cell. Thus the source term is actually a boundary term. The

boundary condition that relates the two pressures is derived from the transverse

momentum equation. According to the quasi-one-dimensional approximation, this
relation is

Pw_ "_ Pi. (176)

Thus the undifferentiated term only appears to be an interior source term when

relation (176) is used as an exact identity to eliminate p,_ in Eq. (175). When one

realizes that Eq. (176) is only an approximate relation, resulting from the approxi-

mate solution of the transverse momentum equation, one sees that the last term in

Eq. (175) is really a transverse boundary term. It should be treated in an algorithm

in the same manner as any other boundary term.

The proper way to discretize the equations is to apply the conservation laws to

the primary grid cells, which are defined by specifying the values of x_+_ and S_+_
at the cell boundaries. In a finite-volume discretization, one also needs the cell

volumes, which are given by

1

V_ = _(xi+} -- x¢__)(S,+½ + Si_½). (177)

Due to the quasi-one-dimensional approximation, the above relation is valid for

both planar and axisymmetric flow. One can also apply the finite-volume method

to secondary grid cells, with special treatment of the half-cells at the two ends of
the channel.

Axisymmetric Flow.

The differential formulation of axisymmetric flow differs from the two-dimensional

case primarily in the definition of geometric quantities. If k is the unit normal to

the _, r/plane, and y is the distance from the axis of symmetry, then one uses

for two-dimensional flow and

r_=k (178)

r_ =yk (179)
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for axisymmetric flow in Eqs. (14)and (lS). Since S t = S_k, one can also write

V = S t for two-dimensional flow and V = yS_ for axisymmetric flow. The strong

conservation-law form (20) with P = 0 and the _"derivative term absent results for

both flows, except for the momentum equation. If j is the unit normal to the axis

of symmetry in the _, rl plane, and v = j •u, then the momentum equation in the j

direction for axisymmetric, inviscid flow is usually written as

+ + (P.),- = o. (180)

The weak conservation-law form of Eq. (180) is again only apparent. The conser-

vation law should really be applied to a wedge-shaped region of angular width A_,

where _o is the circumferential angle. Each cell extends between the two planar

faces of the wedge, which act as cell boundaries in the circumferential direction.

There is no convection of fluid through these boundaries, and the only contribution

to the flux is the pressure in the momentum equation. The circumferential com-

ponent of that equation is identically satisfied by axial symmetry. A finite-volume

discretization of the radial component for cell i,j gives

+ ,y- i_':-½,j + Fi",y+½ - F/_y-½ A2-_o(pbS¢)i,Y sin A_2 = 0. (181)

The last term represents the contributions from the two circumferential boundaries,

where (Pb)i,i is the average pressure acting on the lateral faces of cell i,j. Terms such

as _+½,i are defined as in Eq. (72), while the geometric quantities are calculated

from Eqs. (67)-(69). The condition of axial symmetry yields the boundary condition

(Pb)id _ Pi,Y. (182)

Note that this relation is not exact, since the average pressure acting on a lateral

surface does not equal the pressure determined by the conservative variables av-

eraged over the cell. Since the angular width A_ is arbitrary, we can make the

further approximation
2 A_

A---_ sin _-- _-, 1. (183)

Actually, by choosing Ap small enough, one can make the error in Eq. (183) less

than the round-off error in the computation, so that Eq. (183) becomes effectively

an identity. We thus again find that the undifferentiated term only appears to be

an interior source term when relations (182) and (183) are used in Eq. (181).

The proper way to dlscretize the equations is to apply the conservation laws to

primary grid cells. The axis of symmetry then serves as a boundary of zero surface
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areafor a row of wedged-shaped cells, and consequently does not contribute to any

flux calculations for those cells. One thus avoids any difficulties due to the axis

singularity.

In summary, we have demonstrated for both quasi-one-dimensional and axisym-

metric flow that a finite-volume discretization applied to primary grid cells enables

us to preserve the strong conservation-law form. The undifferentiated terms are

actually boundary terms for the flow region, and should be handled in the same

manner as other flow region boundary terms. While the axisymmetric case was de-

rived for an inviscid flow, it can be readily extended to a viscous flow by including

the normal viscous stress in calculating the force acting on the lateral surface.

CONCLUDING REMARKS

This survey of finite-difference and finite-volume approaches has revealed that

comparisons must be made on two levels. The differences in methods (differential vs.

integral) leads to differences in the way geometric terms are handled. These affect

questions of accuracy and programming efficiency, but are not of a fundamental

nature. In fact, many algorithms use a combination of both approaches. The

differences in grids are more fundamental, and affect many problems related to

computational boundaries. The choice between the two depends on the nature of the

boundary. Zonal boundaries are more naturally treated with a finite-volume grid.

In order to achieve strong conservation, a finite-volume grid is also more natural

for quasi-one-dimensional and axisymmetric flows. On the other hand, greater

accuracy can be achieved near a topological singularity using a finite-difference

grid. At a general boundary, such as a solid wall, the choice is not clear cut, Any

boundary procedure can be adapted to either type of grid. The ultimate choice will

be determined by programming efficiency and stability considerations,

There is another class of discretization schemes which utilize both the finite-

volume and finite-difference grids. Examples of these hybrid schemes are those of

Ni (Ref. 52) and Roe (Ref. 53). The conservation law is first applied to the primary

cells. The changes in conservative variables are then rezoned in a conservative

manner to yield the changes in the secondary cells. These are then used to update

the conservative variables in the secondary cells, Since these schemes do not strictly

fit into either of the classifications according to our definitions, they should properly

be considered a class onto themselves.

There is a superficial resemblance between the finite-volume and finite-element

methods, and much semantic confusion in the literature between the two concepts.

The author has addressed this question in a previous publication (Ref,54), Conven-

tional nodal finite-element methods define the unknowns at cell vertices, and do not

satisfy the integral conservation laws for those cells. Thus, even though they can be

formulated in a manner that provides shock capturing, they cannot be related to
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finite-volume methods. Some recently developed finlte-element methods (Refs. 55

and 56) do satisfy the integral conservation laws. It will be interesting to compare

their theoretical and practical performance with those of the finite-volume methods.

APPENDIX: CALCULATION OF ROE AVERAGED EIGENVALUES

All the calculations in this appendix are carried out for v_ = 0, "7 = 1.4, and

PL = PR. It follows from Eq. (40) that a = 0.5.

Case 1.

In this case the velocity change UR -- ur is assumed to be directed along the
surface normal n. Given

CR = 1.2CL

u_, = 0.995CL (184)

U_ = 1.205CL.

These conditions define a transonic expansion wave. Using Eqs. (39) and (42), one

determines for ,_3 the values

_3L : --0.005ilL

_3R : 0-005CL

_S = -0.005533808cL.

(185)

Note that _3 does not lie between _3L and _3R"

Case 2.

By increasing the normal velocity, we can convert Case 1 to

cR = 1.2c L

ul = 1.002CL

U_ : 1.2102CL.

(186)

These conditions correspond to a supersonic expansion. The values of _,3 are now

_3L = O.O002CL

_3R : O.OI02CL

_3 = --0.000333808CL.

(187)

Note that the Roe averaged normal velocity is now subsonic, even though both u_

and u_ are supersonic.
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Case 3.

This case illustrates that anomalous behavior can result just from a velocity

change tangential to the surface. For concreteness we assume that UL, uR, and n

are coplanar. Defining

'_t-I u -'_,,nl, (188)

we consider the conditions

C R = CL

u_ = 1.01cL

u_ = 1.02CL (188)

UtR = tttL -]-CL.

The normal velocity components again define a supersonic expansion. The values

of A3 are now

A3L = O.OlcL

A3R = 0.02cL (189)

_3 = --0.009697516cL.

The Roe averaged normal velocity for this case is also subsonic.

These three illustrative calculations indicate that conditions can exist for which

the Roe averaged eigenvalue lies outside the range determined by the states L and R.
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